Elastic Energy Storage and Radial Forces in the Myofilament Lattice Depend on Sarcomere Length

نویسندگان

  • C. David Williams
  • Michael Regnier
  • Thomas L. Daniel
چکیده

We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear myofilament elasticity in frog intact muscle fibres.

The aim of the present investigation was to elucidate the elastic properties of the myofilaments during tetanic activity in striated muscle. The study was carried out on intact single muscle fibres from the anterior tibialis muscle of Rana temporaria (2.0-2.5 degrees C). The instantaneous stiffness was measured as the change in force that occurred in response to a high-frequency (2-4 kHz) lengt...

متن کامل

Titin and Troponin: Central Players in the Frank-Starling Mechanism of the Heart

The basis of the Frank-Starling mechanism of the heart is the intrinsic ability of cardiac muscle to produce greater active force in response to stretch, a phenomenon known as length-dependent activation. A feedback mechanism transmitted from cross-bridge formation to troponin C to enhance Ca(2+) binding has long been proposed to account for length-dependent activation. However, recent advances...

متن کامل

The Relationship between Myofilament Packing Density and Sarcomere Length in Frog Striated Muscle

In cross-sections of single fibers from the frog semitendinosus muscle the number of thick myofilaments per unit area (packing density) is a direct function of the sarcomere length. Our data, derived from electron microscopic studies, fit well with other data derived from in vivo, low-angle X-ray diffraction studies of whole semitendinosus muscles. The data are consistent with the assumption th...

متن کامل

Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium.

The Frank-Starling relationship of the heart has, as its molecular basis, an increase in the activation of myofibrils by calcium as the sarcomere length increases. It has been suggested that this phenomenon may be due to myofilaments moving closer together at longer lengths, thereby enhancing the probability of favorable acto-myosin interaction, resulting in increased calcium sensitivity. Accor...

متن کامل

Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.

Residual force enhancement (FE) following stretch of an activated muscle is a well accepted property of skeletal muscle contraction. However, the mechanism underlying FE remains unknown. A crucial assumption on which some proposed mechanisms are based is the idea that forces in the enhanced state cannot exceed the steady-state isometric force at a sarcomere length associated with optimal myofil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012